主页 > 百科知识 > 几何分布通俗讲解

几何分布通俗讲解

时间:2024-11-30 06:19:24 浏览量:

几何分布:

P(X = n) = (1 − p)^(n − 1)p,随着n增大呈等比级数变化,等比级数又称几何级数。

这可能和以前几何学中无限分割图形得到的级数有关。

超几何分布:

P(X=k)=C(k,n) (1-p)^(n-k) p^k ,这个级数和几何级数类似,是超几何级数,因得此名。

基于故障检测(隔离)成功数的超几何分布,利用极大似然法思想研究了RFDC(RFIC)指标的点估计方法,利用贝叶斯公式研究了区间估计方法,并给出了测试性验证规则。

仿真结果表明,与传统的二项分布法相比,对于样本总体确定情况下的测试性验证,超几何分布法的评估和验证结果更加准确,更加适应当前电子装备检测设备的特点,适用于测试性指标RFDC和RFIC的评估和验证。

在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。

它的期望为1/p,方差为(1-p)/(p的平方)。

TAG: 几何分布

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)